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ABSTRACT
In this paper we establish the Haar and Walsh systems on a triangle.
These systems are complete in LZ(A)' The uniform convergence of the Haar-
Fourier series and the uniform convergence by group of the Walsh-Fourier

series for any continuous function are proved.
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; SIGNIFICANCE AND EXPLANATION

.i A number of papers have been concerned with developing the theories of
discontinuous orthonormal systems and their applications. 1In particular, the
f ' Haar and Walsh systems are presently the most important examples of
nonsinusoidal functions, and have proved most useful in communication.

Some authors have studied the properties of approximation from the
1 mathematical point of view. It seems interesting and helpful for both theory
and practice to investigate the Haar and Walsh functions for a multivariate
setting. In fact, many signals in communications and other functions are of
several variables (for instance, TV signals have two Bpace variables and the
lJ time variable). If the domain of definition of the system is tensor product,
then the existing systems are readily extended to several variables.

The problem is how to construct an orthonormal system on a triangular
domain in the plane, or more generally, on a simplex in n-dimensional space.
This paper defines the Haar and Walsh system on a triangle domain, proves the
).a orthogonality and completeness in Ly Also the uniform convergence for the
Haar-Fourier series, uniform convergence by group for the Walsh-Fourier series

are studied. All of these results can be generalized easily to n

dimensions. Acoession For
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ON THE HAAR AND WALSH SYSTEMS ON A TRIANGLE

Y. Y. Feng® and D. X. Qi""

1. Introduction

No doubt, it is interesting and useful to study multivariate Haar and Walsh functions
either in theory or in practice. If we investigate on a domain which can be considered a
Carteslan product, then the functions are readily extended to several variables from the
one variable. Setting by the tensor product construct Harmuth has shown those kinds of
multivariate systems in his book {S5] and pointed out the applications in communication.

In this paper we attempt to focus on a triangle, or more generally on a simplex in n-
dimensional space. We were unable to find any paper about it. Perhaps it purzzles some
people temporarily.

The main contribution of this paper is to establish the Haar and Walsh system with two
variables on a triangle. We prove their orthonormality and completeness in Hilbert space
L,. Moreover, the corresponding Haar-Fourier series and Walsh-Fourier series for any
continuous function are uniformly convergent and convergent by group respectively.

It is easy to generalize these results to the n-dimensional simplex. For simplicity
we will discuss only the two-dimensional triangle.

Now we should explain some preliminaries and notations.

The Haar functions on (0,11 are defined as follows:

Xo(t) =1 for 0€<¢ <1,

and

'Depattment of Mathematics, China University of Science and Technology, Hofei,
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‘j Xn (t) 1= ¢ 2, for P <t e il (1.1)

{ 2 2

i

t

{ 0, elgewhere in [0,1]
‘l k= 1,2,3,-.-,2“' n= 1,2,3'00-,. .
The Walsh functions on [0,1] consist of the following ones:

Wo(t) 1= 1 for 0S¢ <1,

+ 1 i
1 for 0 € ¢ « 3 I
¥ W1(t) 1= 1 (1.2) H
f -1 for 3¢t <1,
*
3 1
i wik) (2e) for 0<¢ <=
w2k (e 1m " ’ 2’
.1 n
ot R e - 1), for e,
4 (k) 1
| (2% Wl (20), for 0S¢t <y,
| LM (t) = 1 ]
) =nkafk)ze - 0, for <t 1,
] 'y
i k=1,2,3,...,20, nE 1,2,3,000,% .

Some detailed investigation of the Haar and Walsh systems can be found in [1}, (3],

.;‘ [5). 1;
; In order to generalize the Haar and Walsh systems to the two-dimensional case we j

-4 should explain our representation in this paper. The Cartesian coordinates are not very
o

Y i convenient for triangular elements, and a special type of coordinate system called area

<4

o coordinates should be used.

6

b d-

Referring to Figure 1 it is seen that the internal point P will divide the triangle

ABC into three smaller triangles, and depending on the position of the point P, the area

SN e e e

of each one of the triangles PAB, PBC, PCA can vary from zero to J8|, which is the area

b
of the triangle ABC. In other words, the ratios T%T' TKT and T§T will take up any

‘b2

value between zero and unity. Here a, b, ¢ are the area of triangles PBC, PCA, PAB

Y e,

respectively.
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These ratios are called area coordinates, and they are defined by 2 4 = TET,

L om b j A PY <
2 TR s T TAT

It is easy to see that

t
1 I T .
- 2 .
x X, X3 %3 2
Y Yy ¥, Y304

If two points P and Q are in two similar triangles respectively, and have the same

area coordinates, then we denote them by P ~ Q.
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2. _An orthonormal sequence X on a triangular domain

Suppose A (or AABC) 4is any triangle on a plane and |4} = 1 is the area of the

ApBC, If D, E, ¥ are midpoints of AB, BC, CA respectively, connecting DE, EF, FD,
we divide the 4 into four similar small triangles AADF, ADBE, AFEC, AEFD. We call them

A1, Az, AS' A4 respectively.
We define the sequence X as follows:
X(P) 1= 1 for PEA,
1 for Ped Vs, ,
X:’)(P) t=

-1 for P8A3U a

4 ’

Y2 for Pe b,

x:z)(P) 1= -2 for P e Az .
0 for P € A3 v A‘ '
V2 for P e A3 '

x(3)

(P) 3= -2 for Ped, ,
1 4
0 for Pe A VU Az R

68 eaos oo s

2@ for Pea
(3j+i)(P)

Xn

(2.1)
0 for P e A\Aj+1 '
where Q€ A, 0~P, 4 =0,1,2,3, 4% 1,2,...,34"2, n=2,3,....

At a point of discontinuity, let the value of these functions be the average.

Now we consider the orthogonality of the sequence X. We prove the following theorem.

Theorem 1. The sequence X defined by (2.1) is orthonormal.

Proof. At first, it is easy to check that when n € 2 the sequence (x:lj)} is
orthonormal. We suppose tha_t the theorem holds for n ¢ N. For 2 €m<N+ 1,

N=1 2
H

j1lj2 =0,1,2, 11 = 1,2,004,3%4 12 - 1,2'...'3.40- s by (2.1) and induction

-4~
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hypothesis, we get

(33,44,)  (33,41,) 1) 14,)
1 2°2 1 2
{ Xeeg | BIX (1P = 48y { Xy @, (@ap
ji+‘

(1)) (12)

-8 1
303, { X (@)%, § (@)ap

8 [ [
51112 11112 N,m-1

It is easy to verify that

(3341 ) (1,) (3344

)
2 1
{ Xeer  (PIX

(P)aP = { Xyeq (P)X,(P)P = 0 .

Therefore the theorem holds for n = N + 1, and this finishes the induction. L

. o b e o - ot by ¥ -: . \ .
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3. Convergence properties

The triangle A has been divided into four similar smaller triangles Ai

(i =1,2,3,4). Now set

L S Y R SR TATRA PAPSTTA.,

—y

such that

61'1 1= A1 (1 =1,2,3,4) .
For each A’ I we divide it into four similar smaller triangles in the same way as
,
. A A LA N ] A
we did before. We order them as 2,1'%2,2° 23,16 such that
A A VU A U A V) o
1,4 " 22,40 %2,41-1Y 83,48-2 Y 23,41-3° i=12.3.4
We continue this process. For any n we get a sequence An 1’An z,...,A
[} ’
n,4
A - V] (V) v
n=-1,1 An,‘i An,41-1 An,41-2 An,41-3'

1= 1,2,3,.-.,‘n-1' n=1,2,3,ce0,"

A0,1 =4

Define a function sequence {fn 1} on the 4;
’

fo(P) = 1 for Pe A,

1 for Pe 51'1 P

f‘ 1(?) =
’ 0 for P e A\,

A’

1 for P@ An,i ’

£ (P) =
n,d 0 for Pe Ma

12 S

1= 1,2,3,400,4", n=1,2,3,00.,° .

It is obvious that the sequence (fn 1} is orthogonal.

Let

) (n >

M, = epan(fn'1,fn'2,.oo,fn,4n

Thus
aim M, = 4",
For convenience, sometimes we use notation
X, = xo ’

e x0T n e, 4a1,2,0..,308"

X n

n=1

4 '+

i=1,2,3,4,

o) .

(3.1) :

(3.2)

(3.3)
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Set
ﬂn 1= lpln(x."le-"I“) .
It is clear that

H4n - Hl‘l ’ (3.4)

since H4n C M, and dim “4n = dim M, = 4",
We define

L,(8) 3= {e1] £2a0 ¢ =}
A

and

] 1612 o [ 240 .,
2 a

Then the Pourier series of a given function F € LZ(A) in terms of the function sequence

{xn) is
-
F~ ) ax (3.5)
: 4oy 44
with
a = { F(P)X, ()P .
Let

P, = 1§1 a x, (®) (3.6)

be the n-th partial sum of the series (3.5).
From the orthogonality of sequence (xn} we know that Pnr is the best L.~
approximation to F from H . Hence it is convergent to ¥ if F is in Lz(A), since

H, is dense in L2(A). Thus we get the following theorem.

n

Theorem 2. If F € LZ(A). then

lim IF - P FI_=10 ,
nbe n 2

-7
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!
_é In order to study the uniform convergence we let
; c(4) := {£]|# is continuous on 4}
: and
o I£1, 1= max |£(P)] .
ped
For F € C(4) we define
‘ Pidlp :m { PX)d0 ¢ x, + { rx:')ao . x:" + oo s { Px;j)dd . x;j) . (3.7)
!
i Set
% Ko(P,Q) &= X, (P)X,(Q), (for Pp,Q e 8)
P20 = xy@ixg@ + V@i Vig) 4 vee s N e , (3.8)
_', J=12,0.0,34",  na,2,....
ﬁ Thus
! PiVe(p) = { {3 (p,0)r(Q)a0 . (3.9)
Iy -, Let A ;= (alj) (4,3 = 1,2,3,...,4") be any 4" x 4" (n = 1,2,.,..) matrix and
v; G(P,Q) be any function defined on 4 x 4,
: The notation G(P,Q) ** A means that the value of G(P,Q) is ‘ij when P €@ An,j' i.

oe An gc It leads to the following relationship:
’

PP

L (v 1 1 4
\;} 1 1 1
% X (PIX(Q) ++ 6 1= .
h 1 1 1
A (v 1 1
: 1 1 -1 -1 3
> 1 1 -1 §
i
# x:”u’)x:”(g) +> 0, 1= s g
-1 -1 1 1 E
}« [ -1 -1 1 1 (3.10) i
, i
k
3

. o
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|
x:”(r)x:z)(q) had a2 1= '
} 0 o o o
= o o 0 o]
(0 0 o o)
0 0 0 0
XN i@y v o) e .
" ' 0 0 2 -2
o 0 -2 2
' In order to write those more shortly, we use the notation
1
A
i [o]
N Az
' d1ag block(Aq,Ags«ccrAp) 1= . ’ (3.11)
! . ]
o An J
i where Ay is square submatrix.
]
. Using (3.11) we get
-1 2 2 2 2
} xg1)(P.Q) Lad oo + 01 = diag block ' .
2 2 2 2

2 2
x{2)(p,0) ¢» 9 + 0, + 0, = alag block [4,4,[ .
2 2

k{3 (P,) ++ g  + 0, + 0, + o, = dlag block(4,4,4,4) ,

where diag block{4,4,4,4) = 4I,,I, is n X n identity matrix. We denote the m * m

zero-element matrix by O, below.

Since

(

(D erxt ) +» atagtas,,0,,0,.0,1, (1= 1,2,3)

X




x{i)¢p,0) ¢+ aiag block(4 t 0,,41,,41,,41,) ,
y=0 3

o X
1

3

i

~. ,434'1)(?,9) ++ diag block(4214,4 jzo cj,u‘,u‘) '
(6+1)(p,0) ++ a1 (4%1,,4° t )
K » ag block(4°I,,4'I,,4 [ ,41‘ .
4 4 4=0 )

and

especially
K{12)(p,0) + 421,¢ = diag block(4?1,,4214,4%1,,4%1,) .

Suppose in the general case that

x(3-4""')

n (P,Q) *» 4“1‘,, .

By definition of (2.1) and (3.8),

£}

xn+1

(P,Q) -* diag block(Ky 1,Kp aseecs )

x‘n,4n
where each ‘1,1 is a 4 x 4 matrix. More precisely

1
x{1)(,0) +* atag plock(a” I o,4",...04"), 0= v,
t=0

4
x(3]*1)(p,Q) +* diag block(4™ 1 ,e00sa” 1 o,0000a™1,)
=0

where the term 4" t o, 1is the (j + 1)=th block, (3 = 1,2,ee.,4" = 1)
t=0

-10=-

k{91 (p,0) +* alag block(4’1,,a%1,.4%1 4 t o), (=123
3

(3.12)

(3.13)

in particular

AN -~
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(3°4™)

et (PeQ) ** oty

K ‘n’1 ’

I AR L L2
P s A T L

therefore for any n= 1,2,.¢s (3.12) holds.

Ri Suppose
2z a@8 4 ia1)ss S Booy,tr 1=1,23,4.
‘;’ By (3.9) we know
3 P{e(a) = { a0 . (3.14)
b, !
- By. (3.13), (3.14) we obtain
» PiIr(a) = an=1 [ r(Q)aQ = 1_f F(Q) a0 (3.15) g
x An-h'- n=1,4 An-1,l
*‘~ for § € 3(2 - 1) and ;
ki ( - - 1 i
PiVr(a) = a® [ moi@ =/ r@® (3.16) 4
+ 4 N n,A" A I} i
R n, n, i
for 3§ 2 3L, :
4 For j = 3% =2, 3% -1 we have
P ea) - 2 Figap + [ rQI)  (3.17)
k L Y Ty 81y 4141
¥ (1=1 or 3) and
3 1
2 TAT:T { F(Q)Q j
' n,4(%-1)
(3%=1)
Pn Fla) = J ae An,d(l-1)+1' i=1,2,
(3.18) 3
12 2 i U F(Q)daQ + f F(Q)&)o i1i=3,4. 3
L T An,‘(l-l)ﬁ An,ul-i)u }
In any case, from (3.15) to (3.18) we conclude j
(3) 1
1m PV ea) = =L [ F1ap - Fla) (3.19) ;
nee T l al Aa ! ]
j
where A @e{8 '} and aed, |A| »0 when n + =, i
a m,1 a a
]

aff=

o~ ] . - X A i
o A
- !

Py ¥ oty BT 5 A Sl N ot Y
s raali ey ST S Nt o i e ST
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It is easy to check that

[ eaia -1

Now (3.19), (3.20) imply the following theorem.

Theorem 3. Yor r e c(d) lim W p -y .o
ne

2

-12-
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(3 = 1,2,000,30™Y),
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Aty ST el e

(3.20)
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4. On the Walsh system

Naturally there exist some different forms of definition which are equivalent. We use

area coordinates to define the two-variable Walsh function. Some notations follow the case
of the Haar functions.
wo(r) 1= 1 for Pe d,
widlip) smwlllio) for Ped, 1=1,2,...,4",

n+1

A A [
"(4n+i)(p) . for P €8 1 v y
n+1 i
=X for peAzu A‘,

oalt A for P4 VA,
(29 @) om 12
- v
A for P @ 63 A‘ R
(3°4%+1) A for Pe 8 v A4 ,

(P) := {4.1)
n -\ for P @ 8,v 4,

vhere
Aa=wlihio), ged, 9~P, 4=1,2,3,0.0,4% n=0,1,2,000 .
w{1(P) 1= Wy(P) = 1 for Ped.
This finishes the definition of the sequence W.

m
Sometimes we prefer w‘ (L = 1,2,3,...,4‘*1) to W(j 4'4) with L = j'4m + 1

m+l
(1 =1,2,...,4", 3 = 0,1,2,3).

At a point of discontinuity, the values of these functions are taken as the average.

Figures 2 and 3 show the Walsh sequence when n = 0,1,

Before the discussion of the orthogonality of the Walsh system we introduce the
Hadamard matrix ({2},{4]), p. 207).

The Hadamard matrix is a square array whose elements consist only of +t and -1 and

whose rows {and columns) are orthogonal to one another. Obviously the lowest order

nontrivial Hadamard matrix is of the order two, vig.

«13=




G vamiewn g

L e ———— R

1 1
ﬂz = . (4.2)
1 =1

Higher order matrices whose orders are powers of two can be obtained from the recurrent
relationship
H, = Hy/p @ Hy (4.3)
where ® denotes the direct or Kronecker product and n is a power of two. The direct
product means replacing each element in the matrix by the H,. With the help of the
Hadamard matrix the one-dimensional Walsh function can be defined [1]. In the two-
dimensional case we should use the 4 X 4 wmatrix
B‘ =Hy, @ I!z
and get the recurrent relationship
Hy = Hg/y 0 B, .« (4.4)
The Hadamard matrix (4.4) corresponds to the Walsh sequence {u‘) 1= 1,2,...,4%
for a given N.
Figures 2 and 3 show the Walsh sequence associated with the Hadamard matrix.
In Figures 2 and 3 black areas represent +1, white areas -%. The following

triangle shows a certain order.

-fd=-
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Wi e [+ & 4+ 4
w*z) |+ -~ -
WP) - |+ + - -
ws‘) e |+ - = 4

(vhere we omit 1 in these elements of the Hadamard matrix)

Figure 2
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] wé')“ T P S,
! wéz)» + - - + - - + -+ - + -+
i w£3)¢-> + b= - + 4 - = + b - + + -

w%‘). * - - - -t - - + - -
& - “55). + e —-m,e t+ ==
B 1 B Lk T I e A ’
.4‘- W;” ttmm ettt b me =wd

(8) - - - - - - - - =
.! w5 + + + + + + + Hy @ Hy
o w;g) + 4+ 44 PP F meme eea-a
o
-y wé"’) ot bemte= b=t ==
i wé"’ T I T T S Y
Kl
3‘,"; "512) I T A T I
-4 wé‘” +t 4t cmme m-=- 4+t
b w;")' -t - -4 = 4 -4 - L
; w£15). b - - + - - + - -
} ,,;16). ==t =t b= e t= 4 ==t
*
Ed
il Figure 3
E2)

-16=
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o

Now we notice that

PnF = g aw
jo1 i1
is the best Lz-approxiutlon to a given function F from
- - “
Hn t= span(W,)}
where
o 1= { F(P)W, (P)GP .
Hence it is convergent to F 4if P is in Ly, since Hn is dense in L,. I.e.
Theorem 4. If F @ L_(A), then lim Ir - Pri_ =10,
= 2 e M2
Since M n” M, and from Theorem 3 we get the following theorem.
4
Theorem 5. lLet F e C(8), P4n be L,-projector onto "4n on A, then
limIF-P Fl_=0.
n
nte 4
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